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Abstract
Apoptosis has a negative impact on the cell survival state during cell cultivation. To optimize mammalian cell culture for 
production of biopharmaceuticals, one of the important approaches is to extend cell life through over-expression of anti-
apoptotic genes. Here, we reported a cost-effective process to enhance cell survival and production of an antibody through 
transient co-transfection with anti-apoptotic genes Bcl-xL or Mcl-1 in Chinese hamster ovary (CHO) cells with polyethyl-
enimine (PEI). Under the optimal conditions, it showed reduced levels of apoptosis and improved cell viability after co-
transfected with Bcl-xL or Mcl-1. The overall production yield of the antibody anti-PD1 increased approximately 82% in 
CHO cells co-transfected with Bcl-xL, and 34% in CHO cells co-transfected with Mcl-1. This work provides an effective 
way to increase viability of host cells through delaying apoptosis onset, thus, raise production yield of biopharmaceuticals 
without the process of generating stable cell lines and subsequent screening.
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Introduction

Mammalian cell expression has become a dominant system 
for recombinant protein production in biopharmaceutical 
industry, because of its advantages in post-translational 
modifications and proper protein folding [1]. And Chinese 
hamster ovary (CHO) cells demonstrated ability of high cell 

density in growth and relatively safe in clinical applications 
[2, 3].

Production of biopharmaceuticals in mammalian cell 
lines have been increased due to improvements in media and 
optimized bioprocess design [4]. However, much more effort 
improving productivity is still needed to meet rapidly grow-
ing market demand for many biological products. According 
to the latest updates of the DrugBank, there were over 5028 
experimental drugs and 4775 non-redundant protein (i.e., 
drug target/enzyme/transporter/carrier) sequences linked to 
these drug entries [5]. Thus, fast development of innova-
tive biological therapeutics would be further appreciated, if 
the process is capable of producing biopharmaceuticals in a 
short period with low cost. Transient gene expression (TGE) 
is gaining popularity as a cost-effective process to produce 
recombinant protein products [6]. The protein of interest is 
expressed usually within 16–96 h using TGE technology. 
And the quality of protein obtained from TGE meets the 
standard of preclinical assessment [7]. Besides, g/L level 
of productivity in TGE with CHO cells have recently been 
reported [8–11]. Even more, TGE of CHO cells at 3 g/L 
expression level by a kit (ExpiCHO, Invitrogen/Life tech-
nologies) was developed and commercially available [12]. 
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TGE demonstrated that it is a potential and vital technology 
that could accelerate the process of screening multiple bio-
therapeutic candidates, thus, speed up the “Proof of Princi-
pal” stage [1].

It would be necessary to optimize mammalian cell cul-
ture in TGE for cost-saving production of biopharmaceuti-
cals. One of critical impact factors on productivity would 
be apoptosis during cell culture process, that is undergoing 
programmed cell death, when cells are exposed to stresses 
caused by various factors, including mechanical agitation, 
nutrient depletion, waste byproduct accumulation, hypoxia 
and viral infection [13]. It was reported that apoptotic pro-
cess accounted for approximately 80% cell death during 
cell culture [14], which affected cell survival state and the 
quality of protein production [15, 16]. It was also reported 
that apoptosis was regulated by either activation or suppres-
sion of the proteins in Bcl-2 family, including three groups: 
anti-apoptotic Bcl-2-like proteins (Bcl-2, Bcl-xL, Mcl-1 and 
Bcl-w), pro-apoptotic Bax-like proteins (Bax, Bak and Bok), 
and pro-apoptotic BH3-only proteins (Bad, Bid, Blk, PUMA, 
and Noxa) [17, 18].

Several methods had been evaluated to limit the onset of 
apoptosis and to extend cell life by inhibiting or delaying 
activation of cell death, which would produce more recom-
binant proteins for biopharmaceutical applications [19]. 
One successful approach to extend cell lifetime was over-
expressing anti-apoptotic genes to manipulate intracellular 
biochemistry [13]. It was reported that anti-apoptotic genes 
could maintain the mitochondria membrane potential, and 
then prevent the release of cytochrome c during apoptosis 
[20]. Our previous work suggested that Bcl-xL and Mcl-1 had 
significant anti-apoptotic effects (data not shown).

Bcl-xL was shown to prevent apoptosis in several produc-
tion host cell lines, including CHO [21–23], BHK [24] and 
Hybridoma [25, 26] and could be utilized to improve pro-
ductivity [23, 24, 27–31] through increasing cell viability 
and reduction of apoptosis. Many previous reports related 
to overexpressing anti-apoptotic genes were mainly in stable 
cell lines, which were time- and resource consuming, due to 
requirement of screening cell lines. Mcl-1, another important 
anti-apoptotic gene, was previously published as it improved 
productivity in stable transfections with Mcl-1 by Beten-
baugh’s group [32]. However, it has not been thoroughly 
examined for its effects on productivity in TGE before. It 
was unique that Mcl-1 did not suppress apoptosis induced by 
overexpression of either Bax or Bak-like Bcl-xL, but did bind 
to them [33]. Additionally, Mcl-1 was related to maintenance 
of cell viability but not stimulation of proliferation [34].

Anti-PD1 antibody has been a great successful inhibi-
tor of immune checkpoint, currently being widely used in 
clinical applications for the treatment of six different tumors 
[35]. Besides three companies were approved by FDA to 
sale the antibodies on the market, many other followers are 

still in various development stages. Optimization of the pro-
duction process or exploration of new approaches would be 
particularly interested in biopharmaceutical industry. Here, 
we described an alternative approach to increase viability of 
production cells, delay apoptosis onset and enhance transient 
expression of anti-PD1 antibody through co-transfection 
with anti-apoptotic genes Bcl-xL or Mcl-1 without stable 
cell line screening.

Materials and methods

Cell lines and maintenance

All the cell lines, media, and supplemental components used 
in this report were from Invitrogen (Carsbad, USA). CHO 
cells with TGE were cultured in a serum-free CD-CHO 
medium supplemented with 8 mM GlutaMAX. Cell cultures 
were maintained in a 37 °C incubator (Thermo Fisher Scien-
tific, Shanghai, China) with 5%  CO2 and shaken at 110 rpm. 
They were passaged at a seeding density of 5 × 105 cells/mL 
every 3–4 days. Cell density and cell viability were meas-
ured with a trypan blue (1:1, v/v; AMRESCO, Solon, USA) 
staining method and then counted by the cell counter (Ruiyu 
Biotech, Shanghai, China). Six-well plates, 24-well plates 
and 125 mL shake flasks (Corning, New York, USA) were 
used in this study.

Plasmid construction

Human Bcl-xL (wt) and Mcl-1 (wt) genes were amplified 
from NCBI cDNA library by PCR (T100TM Thermal 
Cycler, BIO-RAD, Hercules, USA). Bcl-xL and Mcl-1 were 
then cloned into pcDNA3.1 (–), respectively. The human 
Bcl-xL (wt) gene was cloned between XbaI and NotI sites 
(underlined) using the PCR primers: 5′ GCTCT AGA ATG 
TCT CAG AGC AAC CGG GA 3′ and 5′ AAA TAT GCG GCC 
GCT.

CAT TTC CGA CTG AAG AGT GAG CCC AG 3′. The 
human Mcl-1 (wt) gene was cloned between NheI and Hin-
dIII sites (underlined) using the PCR primers 5′ AGCTG 
GCT AGC ATG TTT GGC CTC AAAA.

GAA ACG  3′ and 5′ AGC TGC AAG CTT CTA TCT TAT 
TAG ATA TGC CAA ACC AGC 3′. The expression plasmids 
of anti-PD1 antibody were constructed as described pre-
viously [7]. The expression of target proteins was driven 
by CMV promoter. The constructs were then sequenced 
to ensure proper insertion direction. All plasmids were 
extracted by an endo-free maxi-prep kit (D6926, OMEGA 
Bio-tek, Doraville, USA) according to the manufacturer’s 
instructions and then stored at − 20 °C.
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Transfection

Linear polyethylenimine (PEI) (Polysciences, Warrington, 
USA) (molecular weight of 25 kDa) was prepared in Milli-Q 
water to concentration of 1 mg/mL as the transfection agent 
[36]. Cells growing at exponential stage were passaged into 
fresh culture medium on the day prior to transfection. On the 
day of transfection, cells were spun down (1000 rpm, 5 min) 
and re-suspended at density of 3 × 106 cells/mL. All experi-
ments mentioned in this paper, the ratio of DNA/PEI was 
kept at 1:3. 3 µg/mL DNA was diluted in DMEM (Life tech-
nologies, Shanghai, China) at the concentration of 40 ng/
µL, and then added three times PEI. After brief vortex, the 
complexes of DNA and PEI was incubated at room tempera-
ture for 10–15 min. Then they were added to the cultures and 
shaken at 110 rpm. The ratio of light: heavy chains 2:1 was 
previously used in our Lab and also used in this experiment.

Analysis of apoptosis

The level of apoptosis was assessed using an annexin 
V-FITC/propidium iodide (PI) apoptosis detection kit 
(Vazyme Biotech, Nanjing, China) according to the manu-
facturer’s instruction and detected by the flow cytometry 
BD LSRFortessa (BD Biosciences, San Jose, USA). Cells 
were gated according to viable, early apoptotic (Annexin-
V-FITC), late apoptotic (Annexin-FITC-PI) and dead (PI 
positive) cell populations. And the error bars represented 
the standard error of the mean (SEM) in three or more inde-
pendent experiments.

Quantification of monoclonal antibody production 
by ELISA

A sandwich enzyme-linked immunosorbent assay (ELISA) 
[37] was established for quantifying the production of 
anti-PD1 antibody. First, a 96-well plate was coated with 
monoclonal anti-human κ chain antibody (Merck Millipore, 
Shanghai, China) as a capture antibody. Then, add samples 
harvested from cell culture supernatants. A monoclonal 
HRP-anti-human IgG antibody (FC specific; Jackson Immu-
noResearch, West Grove, USA) was used for detecting enzy-
matic oxidation reaction with TMB substrate. The signal was 
assessed by a spectrophotometer at 450 and 630 nm. The 
data was calculated according to the founded standard curve.

Western blotting

Cells were harvested and lysed in RIPA lysis buffer (137-
mM NaCl, 20 mM Tris, 1 mM  MgCl2, 1 mM  CaCl2, 1% 
NP-40, 0.5% dexycholate, 0.1% SDS, pH7.4) supplemented 
with protease inhibitors. The concentration of total protein 
in clarified lysates was determined by the enhanced BCA 

protein assay kit (Beyotime, Shanghai, China). Samples were 
loaded on a 10-well SDS–PAGE (10% or 12%) gel. Then, 
proteins were transferred to PVDF membrane (Millipore, 
Darmstadt, Germany). Primary antibodies, including rabbit 
α/β-Tubulin antibody, rabbit anti-Bcl-xL antibody and rabbit 
anti-Mcl-1 antibody (Cell Signaling Technology, Danfoss, 
USA) were used, and then followed by a HRP-anti-rabbit 
IgG antibody (Cell Signaling Technology, Danfoss, USA).

Results and discussion

Optimization of TGE parameters

Transfection efficiency was affected mainly by DNA amount, 
DNA: PEI ratios, and cell density [38]. To determine the 
optimal conditions of using PEI to transfect CHO-s cell 
line, we evaluated DNA concentrations of 2.5–4.0 µg/mL, 
cell densities of 1–3 × 106 cells/mL and DNA/PEI ratio of 
1:2–1:3 (w/w) using pEGFP as a reporter protein. 2 days 
post transfection, the transfection efficiency was examined 
by flow cytometry BD LSRFortessa mentioned before with 
blank plasmid-transfected cells as the negative control.

As shown in supplementary data, the transfection effi-
ciency of DNA: PEI = 1:3 (w/w) was higher than that 
of DNA: PEI = 1:2 (w/w). At a cell concentration of 
3 × 106 cells/mL and DNA: PEI ratio = 1:3 (w/w), over 40% 
cells were found to express GFP 48 h after transfection 
when the DNA concentration was either 3.0 or 4.0 µg/mL. 
It was probable that there was negative affect on cell growth 
because of overused PEI, thus, we chose optimal transfec-
tion conditions as below: transfecting 3 × 106 cells/mL with 
3.0 µg/mL DNA at a ratio of DNA: PEI = 1:3 (w/w).

Evaluation of the anti‑apoptotic effects of Bcl‑xL 
and Mcl‑1 in CHO cells

Using the optimal transfection conditions as described 
above, CHO cells were transfected by 3.0 µg/mL of Bcl-xL 
or Mcl-1, respectively, to determine whether over-expression 
of those two anti-apoptotic genes could affect apoptosis of 
host cells. The cells transfected with the same amount of null 
vector pcDNA3.1(–) was used as the control group. After 
transfection, the percentage of apoptosis was measured at 
24, 48 and 72 h, respectively, in three groups (null vector, 
Bcl-xL, Mcl-1).

The percentage of cells undergoing apoptosis was shown 
in Fig. 1a (total apoptosis) and Fig. 1b (late apoptosis). 
Apoptotic cell number increased with culturing duration, 
however, as shown in Fig. 1a, the apoptotic cell number in 
experimental group transfected with apoptotic genes Bcl-
xL or Mcl-1 was considerably fewer than that in the con-
trol group. The control group showed 24.7% of the total 
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population undergoing apoptosis 24 h post transfection, but 
only 10.2% and 13.1% were counted in the groups trans-
fected with Bcl-xL or Mcl-1 at the same time, respectively. 
The gaps between control and experimental groups sustained 
till a 48-h time point, but narrowed down with further exten-
sion of culture time. This might be caused by the loss of 
external anti-apoptotic genes Bcl-xL or Mcl-1. Moreover, the 
group transfected with Bcl-xL or Mcl-1 had higher percent-
age of FITC-PI-negative cells than the control from 24 to 
72 h. There was no significant difference in cell apoptosis 
between those two experimental groups (Bcl-xL and Mcl-1).

Late apoptosis was also examined, and the results were 
shown in Fig. 1b. After transfection, late apoptotic cells 
in the population transfected with null vector gradually 
increased from 16.6 to 29.7%, which was higher than that 
transfected with Bcl-xL or Mcl-1 from 24 to 72 h post trans-
fection. Percentage of cells undergoing late apoptosis was 
much reduced with transfected with Bcl-xL, especially at 
24 h after transfection, to 5.5% (Fig. 1b). Likewise, results 

had been found in cells transfected by another apoptotic gene 
Mcl-1 in a range of 8.4–23.7% from 24 to 72 h. Therefore, it 
was shown that Bcl-xL and Mcl-1 could have positive impact 
on product yield through delaying apoptosis onset.

Optimization of amount of apoptotic genes 
in co‑transfection

To examine the optimal amount of anti-apoptotic genes Bcl-
xL and Mcl-1, we co-transfected 5–75% (w/w) anti-apoptotic 
genes in total 3.0 µg/mL DNA with plasmids coding anti-
PD1 antibody sequence. The amount of PEI, total DNA 
concentration and cell density in all groups were kept same.

To confirm expression of anti-apoptotic genes in cells, 
samples were taken at 48 h after transfection, lysed in RIPA 
buffer, followed by Western blotting to examine the expres-
sion level of the samples with different amount of plasmids 
coding Bcl-xL or Mcl-1 transfected (Fig. 2c, d). The super-
natants were harvested immediately when the cell viability 

Fig. 1  Comparison of apoptosis with Bcl-xL or Mcl-1 in CHO cells. 
CHO cells were transfected with a null vector or vector containing 
Bcl-xL or Mcl-1, respectively, and were monitored throughout 72  h. 

a Total apoptosis and b late stage apoptosis. Error bars represent 
mean ± SEM for six independent experiments. (*, **, *** indicate 
p < 0.05, p < 0.01, p < 0.001, respectively)

Fig. 2  Assessment of productiv-
ity with different percentage of 
anti-apoptosis genes a Bcl-xL 
and b Mcl-1 in co-transfection 
varied from 5 to 75% (w/w) 
and expression of c Bcl-xL and 
d Mcl-1 by Western blotting. 
Supernants were taken when 
cell viability was below 50%. 
Same amount of cell lysate was 
taken at 48 h and was loaded 
in Western blotting. Error bars 
represent mean ± SEM for three 
independent experiments. (*, 
** indicate p < 0.05, p < 0.01, 
respectively)
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was below 50% and examined by Elisa assay. As shown in 
Fig. 2a, the production of anti-PD1 antibody in cells co-
transfected with 10% Bcl-xL (w/w) was considerably higher 
than that in control group, with 15.22 and 9.97 µg/mL, 
respectively (Student’s t test, p = 0.003). However, the pro-
duction titer did not increase further in the group over 25% 
Bcl-xL (w/w) in co-transfection. This was probably because 
of excessive external gene expression and less-targeted pro-
tein plasmid used in co-transfection, which was consistent 
with a previous study [39]. In the case of group of the cells 
transfected with Mcl-1 gene, the result (Fig. 2b) showed that 
production in cells co-transfected with 50% Mcl-1 (w/w) 
increased by approximately two-fold, compared with that 
in control group (Student’s t test, p = 0.017). There was no 
further increase with higher percent of Mcl-1 used.

Assessment of growth, apoptosis and productivity 
of cells co‑transfected with the anti‑apoptotic genes 
Bcl‑xL and Mcl‑1

We co-transfected plasmids coding anti-PD1 antibody with 
10% Bcl-xL or 50% Mcl-1, respectively, under optimized con-
ditions described above, and productivity of anti-PD1 anti-
body was assessed. Cells in control group were transfected 
with 3.0 µg/mL plasmids, in which containing anti-PD1 anti-
body genes only, and the same amount of PEI. Supernatants 
were taken every day and analyzed by ELISA. Considered 
that low cell viability had negative impact on target protein 
quality, the products were harvested immediately when the 

cell viability was below 50%. The samples were stored in a 
−80 °C freezer.

Although cells co-transfected with anti-apoptotic genes 
reached similar viable densities without statistical signifi-
cance compared with the control group (Fig. 3a), the cells 
showed better viability in the group co-transfected with 10% 
Bcl-xL (w/w) or 50% Mcl-1 (w/w). Both still maintained over 
60% viability on day 5, (66.2 and 77.3% respectively with 
statistically significant, Student’s t test, p = 0.011, 0.001, 
respectively). On day 6, the group with anti-apoptotic genes 
dropped to about 50%, while the control group was only 
37.3% on day 5 (Fig. 3b).

To further explore the relationship between the productiv-
ity and function of anti-apoptotic genes, we determined the 
apoptosis of cells in different groups. It showed that cells 
were at different apoptotic stages including total apoptosis 
(Fig. 4a) or late apoptosis (Fig. 4b), and cells co-transfected 
with either Bcl-xL or Mcl-1 were much lower percentage 
than that of control group at 24, 48, 72 h after transfection. 
Compared with the previous studies [39], overall increase 
of apoptosis with higher cell density initially could be 
explained by cell contact and more PEI used. In general, 
toxicity of PEI is relatively low, however, large amount of 
PEI used in the cell culture system might still affect cell 
apoptosis [40, 41].

The cumulative productivity of anti-PD1 antibody grad-
ually increased in all three groups (Fig. 5b). The cumula-
tive productivity in the three groups was similar in first 
3 days, rising from 0 to 2 µg/mL. From day 4, the cultures 
that were co-transfected with 10% Bcl-xL or 50% Mcl-1 

Fig. 3  Assessment of a cell 
density and b cell viability 
with 10% Bcl-xL or 50% Mcl-1 
(w/w) throughout a 6-day cell 
culture. Error bars represent 
mean ± SEM for three inde-
pendent experiments

Fig. 4  Assessment of Bcl-xL 
or Mcl-1 impact on CHO cells 
apoptosis. Apoptosis was 
monitored throughout first 
3 days. a Total apoptosis and b 
late stage apoptosis. Error bars 
represent mean ± SEM for three 
independent experiments. (*, 
** indicate p < 0.05, p < 0.01, 
respectively)
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showed that anti-PD1 antibody reached 6.4 and 5.1 µg/mL, 
respectively. However, on the same day, only 3.9 µg/mL 
of the antibody was produced in the control group. After 
that, the productivity in the control group increased only 
till day 5 when it reached harvest point of below 50% cell 
viability. The titer of the cells transfected by 10% Bcl-xL 
or 50% Mcl-1 were increased till day 6 under the same 
condition and the final expression reached to 12.4 µg/mL 
(Bcl-xL) and 9.1 µg/mL (Mcl-1), respectively, compared 
with 6.8 µg/mL expression level in the group without 
anti-apoptotic genes (Fig. 5a). In conclusion, the overall 
production yield of anti-PD1 antibody increased approxi-
mately 82% in CHO cells co-transfected with Bcl-xL, and 
34% in CHO cells co-transfected with Mcl-1 combining 
results from more than three experiments, which was con-
sistent to previous studies in stable CHO cell lines [32].

To compare anti-apoptotic genes Bcl-xL with Mcl-1 in 
applicable prospects, Bcl-xL gene showed more effective 
in anti-apoptotic effect as well as productivity was signifi-
cantly increased (Fig. 5). Co-transfection with only 10% 
Bcl-xL by weight of total plasmid was enough to result 
similar effect in anti-apoptosis and better product produc-
tion titer (82 vs 34%) as 50% Mcl-1. The differences in 
promoting productivity might be related to different effects 
of two apoptotic proteins on apoptosis [23, 42], autophagy 
[42, 43] and cell cycle [31]. In another word, it might be 
closely associated with function in metabolism regulation 
[25, 44].

Two approaches were previously reported to improve 
cell viability and productivity by co-expressing anti-
apoptotic genes: (1) transiently producing target protein 
in CHO cell that stably expressed anti-apoptotic genes 
[45], or (2) stable overexpression of anti-apoptotic pro-
tein in engineered CHO cell that biopharmaceuticals sta-
bly expressed [21, 27, 31, 43, 46]. Reports showed that 
the engineered cell lines, with Bcl-xL stably expressed, 
resulted in a 70–270% increase in yield after 14 days in 
fed-batch culture [45] and Bcl-xL was overexpressed in a 
CHO cell line that humanized monoclonal antibody titers 
increased by 80%, compared with parent cell lines [21].

Conclusion

We reported engineered CHO cells to express the mono-
clonal antibody PD-1 with co-transfection of anti-apoptotic 
genes to optimize cell cultivation in TGE. Overexpression 
of either Bcl-xL or Mcl-1 increased viability of host cells 
through delaying apoptosis onset. Overall productivity of 
anti-PD1 antibody increased significantly in CHO cells 
that were co-transfected with either Bcl-xL or Mcl-1. Our 
data further proved applicability of the apoptotic genes 
such as Bcl-xL or Mcl-1 in the antibodies production. This 
work provides a cost-effective and time-saving method for 
improving cell survival state and increasing the yields of 
biopharmaceuticals.
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